Tuesday 6 February 2018

Previsão do modelo de média móvel ponderada


Net. sourceforge. openforecast. models Classe WeightedMovingAverageModel Um modelo de previsão de média móvel ponderada é baseado em uma série temporal artificialmente construída em que o valor para um dado período de tempo é substituído pela média ponderada desse valor e os valores para algum número de tempo precedente Períodos. Como você pode ter adivinhado a partir da descrição, este modelo é mais adequado para dados de séries temporais, ou seja, dados que muda ao longo do tempo. Uma vez que o valor da previsão para um determinado período é uma média ponderada dos períodos anteriores, então a previsão sempre ficará atrás de aumentos ou diminuições nos valores observados (dependentes). Por exemplo, se uma série de dados tiver uma tendência ascendente notável, então uma previsão média ponderada da média móvel irá geralmente fornecer uma subestimação dos valores da variável dependente. O modelo de média móvel ponderada, como o modelo de média móvel, tem uma vantagem sobre outros modelos de previsão, na medida em que suaviza picos e depressões (ou vales) em um conjunto de observações. No entanto, como o modelo de média móvel, ele também tem várias desvantagens. Em particular, este modelo não produz uma equação real. Portanto, não é tudo o que é útil como uma ferramenta de previsão de médio e longo alcance. Ele só pode ser usado de forma confiável para prever alguns períodos no futuro. Desde: 0.4 Autor: Steven R. Gould Campos herdados da classe net. sourceforge. openforecast. models. AbstractForecastingModel WeightedMovingAverageModel () Constrói um novo modelo de previsão de média móvel ponderada. WeightedMovingAverageModel (double weights) Constrói um novo modelo de previsão de média móvel ponderada, usando os pesos especificados. Forecast (double timeValue) Retorna o valor de previsão da variável dependente para o valor fornecido da variável de tempo independente. GetForecastType () Retorna um nome de uma ou duas palavras desse tipo de modelo de previsão. GetNumberOfPeriods () Retorna o número atual de períodos usados ​​neste modelo. GetNumberOfPredictors () Retorna o número de preditores usados ​​pelo modelo subjacente. SetWeights (pesos duplos) Define os pesos usados ​​por este modelo de previsão de média móvel ponderada para os pesos dados. ToString () Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, quando possível, qualquer parâmetro derivado usado. Métodos herdados da classe net. sourceforge. openforecast. models. AbstractTimeBasedModel WeightedMovingAverageModel Constrói um novo modelo de previsão de média móvel ponderada, usando os pesos especificados. Para um modelo válido a ser construído, você deve chamar init e passar em um conjunto de dados contendo uma série de pontos de dados com a variável de tempo inicializado para identificar a variável independente. O tamanho da matriz de pesos é usado para determinar o número de observações a serem utilizadas para calcular a média móvel ponderada. Adicionalmente, o período mais recente será dado o peso definido pelo primeiro elemento da matriz, isto é pesos @. O tamanho da matriz de pesos também é usado para determinar a quantidade de períodos futuros que podem ser efetivamente previstos. Com uma média móvel ponderada de 50 dias, não podemos razoavelmente - com qualquer grau de precisão - prever mais de 50 dias para além do último período para o qual os dados estão disponíveis. Mesmo a previsão perto do fim desta escala é provável ser não confiável. Nota sobre pesos Em geral, os pesos passados ​​para esse construtor devem somar 1,0. No entanto, como uma conveniência, se a soma dos pesos não se somar a 1,0, esta implementação escalas todos os pesos proporcionalmente para que eles somam a 1,0. Parâmetros: pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. WeightedMovingAverageModel Constrói um novo modelo de previsão da média móvel ponderada, usando a variável nomeada como a variável independente e os pesos especificados. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. Pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. WeightedMovingAverageModel Constrói um novo modelo de previsão da média móvel ponderada. Este construtor destina-se a ser usado apenas por subclasses (portanto, ele é protegido). Qualquer subclasse usando esse construtor deve posteriormente invocar o método (protected) setWeights para inicializar os pesos a serem usados ​​por este modelo. WeightedMovingAverageModel Constrói um novo modelo de previsão da média móvel ponderada usando a variável independente dada. Parâmetros: independentVariable - o nome da variável independente a ser usada neste modelo. SetWeights Define os pesos usados ​​por este modelo de previsão de média móvel ponderada para os pesos dados. Este método destina-se a ser utilizado apenas por subclasses (portanto, é protegido), e apenas em conjunto com o (protegido) um argumento-construtor. Qualquer subclasse usando o construtor de um argumento deve subsequentemente chamar setWeights antes de invocar o método AbstractTimeBasedModel. init (net. sourceforge. openforecast. DataSet) para inicializar o modelo. Nota sobre pesos Em geral, os pesos passados ​​para este método devem somar 1,0. No entanto, como uma conveniência, se a soma dos pesos não se somar a 1,0, esta implementação escalas todos os pesos proporcionalmente para que eles somam a 1,0. Parâmetros: pesos - um conjunto de pesos a atribuir às observações históricas ao calcular a média móvel ponderada. Forecast Retorna o valor de previsão da variável dependente para o valor fornecido da variável de tempo independente. As subclasses devem implementar este método de forma consistente com o modelo de previsão que implementam. As subclasses podem usar os métodos getForecastValue e getObservedValue para obter previsões e observações anteriores respectivamente. Especificado por: forecast na classe AbstractTimeBasedModel Parâmetros: timeValue - o valor da variável de tempo para o qual um valor de previsão é necessário. Retorna: o valor de previsão da variável dependente para o tempo determinado. Throws: IllegalArgumentException - se houver dados históricos insuficientes - observações passadas para o init - para gerar uma previsão para o dado valor de tempo. GetNumberOfPredictors Retorna o número de preditores usados ​​pelo modelo subjacente. Retorna: o número de preditores utilizados pelo modelo subjacente. GetNumberOfPeriods Retorna o número atual de períodos usados ​​neste modelo. Especificado por: getNumberOfPeriods na classe AbstractTimeBasedModel Retorna: o número atual de períodos usados ​​neste modelo. GetForecastType Retorna um nome de uma ou duas palavras desse tipo de modelo de previsão. Mantenha este short. Uma descrição mais longa deve ser implementada no método toString. ToString Isso deve ser substituído para fornecer uma descrição textual do modelo de previsão atual, incluindo, quando possível, qualquer parâmetro derivado usado. Especificado por: toString na interface ForecastingModel Substitui: toString na classe AbstractTimeBasedModel Retorna: uma representação de seqüência de caracteres do modelo de previsão atual e seus parâmetros. Médias móveis ponderadas: o básico Ao longo dos anos, os técnicos encontraram dois problemas com a média móvel simples. O primeiro problema reside no período de tempo da média móvel (MA). A maioria dos analistas técnicos acreditam que a ação preço. O preço de abertura ou de fechamento das ações, não é suficiente para depender para predizer adequadamente sinais de compra ou venda da ação de crossover MAs. Para resolver este problema, os analistas agora atribuem mais peso aos dados de preços mais recentes usando a média móvel exponencialmente suavizada (EMA). Exemplo: Por exemplo, usando um MA de 10 dias, um analista levaria o preço de fechamento do 10º dia e multiplicaria esse número por 10, o nono dia por nove, o oitavo Dia por oito e assim por diante para o primeiro do MA. Uma vez determinado o total, o analista dividiria o número pela adição dos multiplicadores. Se você adicionar os multiplicadores do exemplo de MA de 10 dias, o número é 55. Esse indicador é conhecido como a média móvel ponderada linearmente. (Para a leitura relacionada, verifique para fora as médias moventes simples fazem tendências estar para fora.) Muitos técnicos são crentes firmes na média movente exponencial suavizada (EMA). Este indicador tem sido explicado de tantas maneiras diferentes que confunde estudantes e investidores. Talvez a melhor explicação venha de John J. Murphys Análise Técnica dos Mercados Financeiros (publicado pelo New York Institute of Finance, 1999): A média móvel exponencialmente suavizada aborda ambos os problemas associados à média móvel simples. Primeiro, a média exponencialmente suavizada atribui um maior peso aos dados mais recentes. Portanto, é uma média móvel ponderada. Mas, embora atribua menor importância aos dados de preços passados, inclui no seu cálculo todos os dados na vida útil do instrumento. Além disso, o usuário é capaz de ajustar a ponderação para dar maior ou menor peso ao preço dos dias mais recentes, que é adicionado a uma porcentagem do valor dias anteriores. A soma de ambos os valores percentuais adiciona até 100. Por exemplo, o preço dos últimos dias poderia ser atribuído um peso de 10 (0,10), que é adicionado ao peso dias anteriores de 90 (0,90). Isto dá o último dia 10 da ponderação total. Isso seria o equivalente a uma média de 20 dias, dando ao preço dos últimos dias um valor menor de 5 (0,05). Figura 1: Média Movimentada Exponencialmente Alisada O gráfico acima mostra o índice Nasdaq Composite da primeira semana de agosto de 2000 a 1º de junho de 2001. Como você pode ver claramente, a EMA, que neste caso está usando os dados de fechamento de preços em um Período de nove dias, tem sinais de venda definitiva no dia 8 de setembro (marcado por uma seta preta para baixo). Este foi o dia em que o índice quebrou abaixo do nível de 4.000. A segunda seta preta mostra outra perna para baixo que os técnicos estavam realmente esperando. O Nasdaq não conseguiu gerar volume suficiente e juros dos investidores de varejo para quebrar a marca de 3.000. Em seguida, mergulhou novamente para baixo para fora em 1619.58 em 4 de abril. A tendência de alta de 12 de abril é marcado por uma seta. Aqui o índice fechou em 1.961,46, e os técnicos começaram a ver os gestores de fundos institucionais começando a pegar alguns negócios como Cisco, Microsoft e algumas das questões relacionadas à energia. (Leia nossos artigos relacionados: Envelopes Móveis em Movimento: Refinando uma Ferramenta de Negociação Popular e Saldo Médio em Movimento.) Uma pessoa que negocia derivativos, commodities, títulos, ações ou moedas com um risco maior que a média em troca. QuotHINTquot é uma sigla que significa quothigh renda não impostos. quot É aplicado a high-assalariados que evitam pagar renda federal. Um fabricante de mercado que compra e vende títulos corporativos de curto prazo, denominados papel comercial. Um negociante de papel é tipicamente. Definição do Modelo de Média Móvel Ponderada No modelo de média móvel ponderada (estratégia de previsão 14), cada valor histórico é ponderado com um fator do grupo de ponderação no grupo de ponderação Perfil de previsão univariada. Fórmula para a Média Móvel Ponderada O modelo de média móvel ponderada permite que você pese dados históricos recentes mais pesadamente do que dados mais antigos ao determinar a média. Você faz isso se os dados mais recentes forem mais representativos da demanda futura do que os dados mais antigos. Portanto, o sistema é capaz de reagir mais rapidamente a uma mudança de nível. Uso A precisão deste modelo depende em grande parte de sua escolha de fatores de ponderação. Se o padrão da série de tempo mudar, você também deve adaptar os fatores de ponderação. Ao criar um grupo de ponderação, você insere os fatores de ponderação como porcentagens. A soma dos fatores de ponderação não precisa ser 100. Nenhuma previsão ex-post é calculada com esta estratégia de previsão. Modelos de média móvel e de suavização exponencial Como um primeiro passo para ir além dos modelos de média, aleatória e linear, Padrões e tendências não sazonais podem ser extrapolados usando um modelo de média móvel ou suavização. A suposição básica por trás dos modelos de média e suavização é que a série temporal é localmente estacionária com uma média lentamente variável. Assim, tomamos uma média móvel (local) para estimar o valor atual da média e então usamos isso como a previsão para o futuro próximo. Isto pode ser considerado como um compromisso entre o modelo médio e o modelo aleatório-andar-sem-deriva. A mesma estratégia pode ser usada para estimar e extrapolar uma tendência local. Uma média móvel é muitas vezes chamado de uma versão quotsmoothedquot da série original, porque a média de curto prazo tem o efeito de suavizar os solavancos na série original. Ajustando o grau de suavização (a largura da média móvel), podemos esperar encontrar algum tipo de equilíbrio ótimo entre o desempenho dos modelos de caminhada média e aleatória. O tipo mais simples de modelo de média é o. Média Móvel Simples (igualmente ponderada): A previsão para o valor de Y no tempo t1 que é feita no tempo t é igual à média simples das observações m mais recentes: (Aqui e em outro lugar usarei o símbolo 8220Y-hat8221 para ficar Para uma previsão da série temporal Y feita o mais cedo possível antes de um determinado modelo). Esta média é centrada no período t (m1) / 2, o que implica que a estimativa da média local tende a ficar para trás Valor real da média local em cerca de (m1) / 2 períodos. Dessa forma, dizemos que a idade média dos dados na média móvel simples é (m1) / 2 relativa ao período para o qual a previsão é calculada: é a quantidade de tempo em que as previsões tenderão a ficar para trás dos pontos de inflexão na dados. Por exemplo, se você estiver calculando a média dos últimos 5 valores, as previsões serão cerca de 3 períodos atrasados ​​em responder a pontos de viragem. Observe que se m1, o modelo de média móvel simples (SMA) é equivalente ao modelo de caminhada aleatória (sem crescimento). Se m é muito grande (comparável ao comprimento do período de estimação), o modelo SMA é equivalente ao modelo médio. Como com qualquer parâmetro de um modelo de previsão, é costume ajustar o valor de k para obter o melhor quotfitquot aos dados, isto é, os erros de previsão mais pequenos em média. Aqui está um exemplo de uma série que parece apresentar flutuações aleatórias em torno de uma média de variação lenta. Primeiro, vamos tentar ajustá-lo com um modelo de caminhada aleatória, o que equivale a uma média móvel simples de um termo: O modelo de caminhada aleatória responde muito rapidamente às mudanças na série, mas ao fazê-lo ele escolhe grande parte do quotnoise no Dados (as flutuações aleatórias), bem como o quotsignalquot (a média local). Se, em vez disso, tentarmos uma média móvel simples de 5 termos, obtemos um conjunto de previsões mais suaves: A média móvel simples de 5 períodos produz erros significativamente menores do que o modelo de caminhada aleatória neste caso. A idade média dos dados nessa previsão é de 3 ((51) / 2), de modo que ela tende a ficar atrás de pontos de viragem em cerca de três períodos. (Por exemplo, uma desaceleração parece ter ocorrido no período 21, mas as previsões não virar até vários períodos mais tarde.) Observe que as previsões de longo prazo do modelo SMA são uma linha reta horizontal, assim como na caminhada aleatória modelo. Assim, o modelo SMA assume que não há tendência nos dados. No entanto, enquanto as previsões do modelo de caminhada aleatória são simplesmente iguais ao último valor observado, as previsões do modelo SMA são iguais a uma média ponderada de valores recentes. Os limites de confiança calculados pela Statgraphics para as previsões de longo prazo da média móvel simples não se alargam à medida que o horizonte de previsão aumenta. Isto obviamente não é correto Infelizmente, não existe uma teoria estatística subjacente que nos diga como os intervalos de confiança devem se alargar para este modelo. No entanto, não é muito difícil calcular estimativas empíricas dos limites de confiança para as previsões de longo prazo. Por exemplo, você poderia configurar uma planilha na qual o modelo SMA seria usado para prever 2 passos à frente, 3 passos à frente, etc. dentro da amostra de dados históricos. Você poderia então calcular os desvios padrão da amostra dos erros em cada horizonte de previsão e, em seguida, construir intervalos de confiança para previsões de longo prazo adicionando e subtraindo múltiplos do desvio padrão apropriado. Se tentarmos uma média móvel simples de 9 termos, obtemos previsões ainda mais suaves e mais um efeito retardado: A idade média é agora de 5 períodos ((91) / 2). Se tomarmos uma média móvel de 19 períodos, a idade média aumenta para 10: Observe que, na verdade, as previsões estão agora atrasadas por pontos de inflexão em cerca de 10 períodos. Qual a quantidade de suavização é melhor para esta série Aqui está uma tabela que compara suas estatísticas de erro, incluindo também uma média de 3-termo: Modelo C, a média móvel de 5-termo, rende o menor valor de RMSE por uma pequena margem sobre o 3 E médias de 9-termo, e suas outras estatísticas são quase idênticas. Assim, entre os modelos com estatísticas de erro muito semelhantes, podemos escolher se preferiríamos um pouco mais de resposta ou um pouco mais de suavidade nas previsões. O modelo de média móvel simples descrito acima tem a propriedade indesejável de tratar as últimas k observações igualmente e completamente ignora todas as observações anteriores. (Voltar ao início da página.) Marrons Simples Exponencial Suavização (exponencialmente ponderada média móvel) Intuitivamente, os dados passados ​​devem ser descontados de forma mais gradual - por exemplo, a observação mais recente deve ter um pouco mais de peso que a segunda mais recente, ea segunda mais recente deve ter um pouco mais de peso que a 3ª mais recente, e em breve. O modelo de suavização exponencial simples (SES) realiza isso. Vamos 945 denotar uma constante quotsmoothingquot (um número entre 0 e 1). Uma maneira de escrever o modelo é definir uma série L que represente o nível atual (isto é, o valor médio local) da série, conforme estimado a partir dos dados até o presente. O valor de L no tempo t é calculado recursivamente a partir de seu próprio valor anterior como este: Assim, o valor suavizado atual é uma interpolação entre o valor suavizado anterior e a observação atual, onde 945 controla a proximidade do valor interpolado para o mais recente observação. A previsão para o próximo período é simplesmente o valor suavizado atual: Equivalentemente, podemos expressar a próxima previsão diretamente em termos de previsões anteriores e observações anteriores, em qualquer uma das seguintes versões equivalentes. Na primeira versão, a previsão é uma interpolação entre previsão anterior e observação anterior: Na segunda versão, a próxima previsão é obtida ajustando a previsão anterior na direção do erro anterior por uma fração 945. é o erro feito em Tempo t. Na terceira versão, a previsão é uma média móvel exponencialmente ponderada (ou seja, descontada) com o fator de desconto 1- 945: A versão de interpolação da fórmula de previsão é a mais simples de usar se você estiver implementando o modelo em uma planilha: Célula única e contém referências de células que apontam para a previsão anterior, a observação anterior ea célula onde o valor de 945 é armazenado. Observe que, se 945 1, o modelo SES é equivalente a um modelo de caminhada aleatória (sem crescimento). Se 945 0, o modelo SES é equivalente ao modelo médio, assumindo que o primeiro valor suavizado é definido igual à média. A idade média dos dados na previsão de suavização exponencial simples é de 1/945 em relação ao período para o qual a previsão é calculada. (Isso não é suposto ser óbvio, mas pode ser facilmente demonstrado através da avaliação de uma série infinita.) Portanto, a previsão média móvel simples tende a ficar para trás de pontos de viragem em cerca de 1/945 períodos. Por exemplo, quando 945 0,5 o atraso é 2 períodos quando 945 0,2 o atraso é de 5 períodos quando 945 0,1 o atraso é de 10 períodos, e assim por diante. Para uma dada idade média (isto é, a quantidade de atraso), a previsão de suavização exponencial simples (SES) é um pouco superior à previsão de média móvel simples (SMA) porque coloca relativamente mais peso na observação mais recente - i. e. É ligeiramente mais quotresponsivequot às mudanças que ocorrem no passado recente. Por exemplo, um modelo SMA com 9 termos e um modelo SES com 945 0,2 têm uma idade média de 5 para os dados nas suas previsões, mas o modelo SES coloca mais peso nos últimos 3 valores do que o modelo SMA e no modelo SMA. Outra vantagem importante do modelo SES sobre o modelo SMA é que o modelo SES usa um parâmetro de suavização que é continuamente variável, de modo que pode ser facilmente otimizado Utilizando um algoritmo quotsolverquot para minimizar o erro quadrático médio. O valor óptimo de 945 no modelo SES para esta série revela-se 0.2961, como mostrado aqui: A idade média dos dados nesta previsão é de 1 / 0.2961 3.4 períodos, que é semelhante ao de um 6-termo simples de movimento média. As previsões a longo prazo do modelo SES são uma linha reta horizontal. Como no modelo SMA eo modelo de caminhada aleatória sem crescimento. No entanto, note que os intervalos de confiança calculados por Statgraphics agora divergem de uma forma razoavelmente aparente, e que eles são substancialmente mais estreitos do que os intervalos de confiança para o modelo de caminhada aleatória. O modelo SES assume que a série é um tanto mais previsível do que o modelo de caminhada aleatória. Um modelo SES é realmente um caso especial de um modelo ARIMA. De modo que a teoria estatística dos modelos ARIMA fornece uma base sólida para o cálculo de intervalos de confiança para o modelo SES. Em particular, um modelo SES é um modelo ARIMA com uma diferença não sazonal, um termo MA (1) e nenhum termo constante. Também conhecido como um modelo quimétrico ARIMA (0,1,1) sem constantequot. O coeficiente MA (1) no modelo ARIMA corresponde à quantidade 1-945 no modelo SES. Por exemplo, se você ajustar um modelo ARIMA (0,1,1) sem constante à série aqui analisada, o coeficiente MA estimado (1) resulta ser 0,7029, que é quase exatamente um menos 0,2961. É possível adicionar a hipótese de uma tendência linear constante não-zero para um modelo SES. Para isso, basta especificar um modelo ARIMA com uma diferença não sazonal e um termo MA (1) com uma constante, ou seja, um modelo ARIMA (0,1,1) com constante. As previsões a longo prazo terão então uma tendência que é igual à tendência média observada ao longo de todo o período de estimação. Não é possível fazer isso em conjunto com o ajuste sazonal, porque as opções de ajuste sazonal são desativadas quando o tipo de modelo é definido como ARIMA. No entanto, você pode adicionar uma tendência exponencial de longo prazo constante a um modelo de suavização exponencial simples (com ou sem ajuste sazonal) usando a opção de ajuste de inflação no procedimento de Previsão. A taxa adequada de inflação (crescimento percentual) por período pode ser estimada como o coeficiente de declive num modelo de tendência linear ajustado aos dados em conjunção com uma transformação de logaritmo natural, ou pode basear-se noutras informações independentes relativas às perspectivas de crescimento a longo prazo . (Retornar ao início da página.) Browns Linear (ie double) Suavização exponencial Os modelos SMA e SES assumem que não há tendência de qualquer tipo nos dados (o que geralmente é OK ou pelo menos não muito ruim para 1- Antecipadamente quando os dados são relativamente ruidosos) e podem ser modificados para incorporar uma tendência linear constante como mostrado acima. O que acontece com as tendências a curto prazo Se uma série exibe uma taxa variável de crescimento ou um padrão cíclico que se destaca claramente contra o ruído, e se houver uma necessidade de prever mais de um período à frente, a estimativa de uma tendência local também pode ser um problema. O modelo de suavização exponencial simples pode ser generalizado para obter um modelo de suavização exponencial linear (LES) que calcula estimativas locais de nível e tendência. O modelo de tendência de variação de tempo mais simples é o modelo de alisamento exponencial linear de Browns, que usa duas séries suavizadas diferentes que são centradas em diferentes pontos no tempo. A fórmula de previsão é baseada em uma extrapolação de uma linha através dos dois centros. (Uma versão mais sofisticada deste modelo, Holt8217s, é discutida abaixo). A forma algébrica do modelo de suavização exponencial linear de Brown8217s, como a do modelo de suavização exponencial simples, pode ser expressa em um número de formas diferentes mas equivalentes. A forma quotstandard deste modelo é usualmente expressa da seguinte maneira: Seja S a série de suavização simples obtida pela aplicação de suavização exponencial simples à série Y. Ou seja, o valor de S no período t é dado por: (Lembre-se que, sob simples Exponencial, esta seria a previsão para Y no período t1.) Então deixe Squot denotar a série duplamente-alisada obtida aplicando a suavização exponencial simples (usando o mesmo 945) à série S: Finalmente, a previsão para Y tk. Para qualquer kgt1, é dada por: Isto produz e 1 0 (isto é, enganar um pouco e deixar a primeira previsão igual à primeira observação real) e e 2 Y 2 8211 Y 1. Após o que as previsões são geradas usando a equação acima. Isto produz os mesmos valores ajustados que a fórmula baseada em S e S se estes últimos foram iniciados utilizando S 1 S 1 Y 1. Esta versão do modelo é usada na próxima página que ilustra uma combinação de suavização exponencial com ajuste sazonal. Holt8217s Linear Exponential Smoothing Brown8217s O modelo LES calcula estimativas locais de nível e tendência ao suavizar os dados recentes, mas o fato de que ele faz isso com um único parâmetro de suavização coloca uma restrição nos padrões de dados que é capaz de ajustar: o nível ea tendência Não são permitidos variar em taxas independentes. Holt8217s modelo LES aborda esta questão, incluindo duas constantes de alisamento, um para o nível e um para a tendência. Em qualquer momento t, como no modelo Brown8217s, existe uma estimativa L t do nível local e uma estimativa T t da tendência local. Aqui eles são calculados recursivamente a partir do valor de Y observado no tempo t e as estimativas anteriores do nível e tendência por duas equações que aplicam alisamento exponencial para eles separadamente. Se o nível estimado ea tendência no tempo t-1 são L t82091 e T t-1. Respectivamente, então a previsão para Y tshy que teria sido feita no tempo t-1 é igual a L t-1 T t-1. Quando o valor real é observado, a estimativa atualizada do nível é computada recursivamente pela interpolação entre Y tshy e sua previsão, L t-1 T t-1, usando pesos de 945 e 1-945. A mudança no nível estimado, Nomeadamente L t 8209 L t82091. Pode ser interpretado como uma medida ruidosa da tendência no tempo t. A estimativa actualizada da tendência é então calculada recursivamente pela interpolação entre L t 8209 L t82091 e a estimativa anterior da tendência, T t-1. Usando pesos de 946 e 1-946: A interpretação da constante de alisamento de tendência 946 é análoga à da constante de alisamento de nível 945. Modelos com valores pequenos de 946 assumem que a tendência muda apenas muito lentamente ao longo do tempo, enquanto modelos com Maior 946 supor que está mudando mais rapidamente. Um modelo com um 946 grande acredita que o futuro distante é muito incerto, porque os erros na tendência-estimativa tornam-se completamente importantes ao prever mais de um período adiante. As constantes de suavização 945 e 946 podem ser estimadas da maneira usual, minimizando o erro quadrático médio das previsões de 1 passo à frente. Quando isso é feito em Statgraphics, as estimativas se tornam 945 0,3048 e 946 0,008. O valor muito pequeno de 946 significa que o modelo assume muito pouca mudança na tendência de um período para o outro, então basicamente este modelo está tentando estimar uma tendência de longo prazo. Por analogia com a noção de idade média dos dados que é usada na estimativa do nível local da série, a idade média dos dados que é usada na estimativa da tendência local é proporcional a 1/946, embora não exatamente igual a isto. Neste caso, isto é 1 / 0.006 125. Este número é muito preciso, na medida em que a precisão da estimativa de 946 é realmente de 3 casas decimais, mas é da mesma ordem geral de magnitude que o tamanho da amostra de 100 , Assim que este modelo está calculando a média sobre bastante muita história em estimar a tendência. O gráfico de previsão abaixo mostra que o modelo LES estima uma tendência local ligeiramente maior no final da série do que a tendência constante estimada no modelo SEStrend. Além disso, o valor estimado de 945 é quase idêntico ao obtido pelo ajuste do modelo SES com ou sem tendência, de modo que este é quase o mesmo modelo. Agora, eles parecem previsões razoáveis ​​para um modelo que é suposto estar estimando uma tendência local Se você 8220eyeball8221 esse enredo, parece que a tendência local virou para baixo no final da série O que aconteceu Os parâmetros deste modelo Foram calculados minimizando o erro quadrático das previsões de um passo à frente, e não as previsões a mais longo prazo, caso em que a tendência não faz muita diferença. Se tudo o que você está olhando são 1-passo-frente erros, você não está vendo a imagem maior de tendências sobre (digamos) 10 ou 20 períodos. A fim de obter este modelo mais em sintonia com a nossa extrapolação do globo ocular dos dados, podemos ajustar manualmente a tendência de suavização constante para que ele usa uma linha de base mais curto para a estimativa de tendência. Por exemplo, se escolhemos definir 946 0,1, então a idade média dos dados usados ​​na estimativa da tendência local é de 10 períodos, o que significa que estamos fazendo uma média da tendência ao longo dos últimos 20 períodos aproximadamente. Here8217s o que o lote de previsão parece se ajustarmos 946 0.1 mantendo 945 0.3. Isso parece intuitivamente razoável para esta série, embora seja provavelmente perigoso para extrapolar esta tendência mais de 10 períodos no futuro. E sobre as estatísticas de erro Aqui está uma comparação de modelos para os dois modelos mostrados acima, bem como três modelos SES. O valor ótimo de 945 para o modelo SES é de aproximadamente 0,3, mas resultados semelhantes (com ligeiramente mais ou menos responsividade, respectivamente) são obtidos com 0,5 e 0,2. (A) Holts linear exp. Alisamento com alfa 0,3048 e beta 0,008 (B) Holts linear exp. Alisamento com alfa 0,3 e beta 0,1 (C) Alisamento exponencial simples com alfa 0,5 (D) Alisamento exponencial simples com alfa 0,3 (E) Alisamento exponencial simples com alfa 0,2 Suas estatísticas são quase idênticas, então realmente não podemos fazer a escolha com base De erros de previsão de 1 passo à frente dentro da amostra de dados. Temos de recorrer a outras considerações. Se acreditarmos firmemente que faz sentido basear a estimativa de tendência atual sobre o que aconteceu nos últimos 20 períodos, podemos fazer um caso para o modelo LES com 945 0,3 e 946 0,1. Se quisermos ser agnósticos quanto à existência de uma tendência local, então um dos modelos SES pode ser mais fácil de explicar e também fornecerá mais previsões de médio-caminho para os próximos 5 ou 10 períodos. Evidências empíricas sugerem que, se os dados já tiverem sido ajustados (se necessário) para a inflação, então pode ser imprudente extrapolar os resultados lineares de curto prazo Muito para o futuro. As tendências evidentes hoje podem afrouxar no futuro devido às causas variadas tais como a obsolescência do produto, a competição aumentada, e os abrandamentos cíclicos ou as ascensões em uma indústria. Por esta razão, a suavização exponencial simples geralmente desempenha melhor fora da amostra do que poderia ser esperado, apesar da sua extrapolação de tendência horizontal quotnaivequot. Modificações de tendência amortecida do modelo de suavização exponencial linear também são freqüentemente usadas na prática para introduzir uma nota de conservadorismo em suas projeções de tendência. O modelo LES com tendência a amortecimento pode ser implementado como um caso especial de um modelo ARIMA, em particular, um modelo ARIMA (1,1,2). É possível calcular intervalos de confiança em torno de previsões de longo prazo produzidas por modelos exponenciais de suavização, considerando-os como casos especiais de modelos ARIMA. A largura dos intervalos de confiança depende de (i) o erro RMS do modelo, (ii) o tipo de suavização (simples ou linear) (iii) o valor (S) da (s) constante (s) de suavização e (iv) o número de períodos que você está prevendo. Em geral, os intervalos se espalham mais rapidamente à medida que o 945 se torna maior no modelo SES e eles se espalham muito mais rápido quando se usa linear ao invés de alisamento simples. Este tópico é discutido mais adiante na seção de modelos ARIMA das notas. (Voltar ao início da página.) 8.4 Modelos de média móvel Em vez de usar valores passados ​​da variável de previsão em uma regressão, um modelo de média móvel usa erros de previsão passados ​​em um modelo de regressão. Y e teta teta e dots theta e, onde et é ruído branco. Referimo-nos a isto como um modelo MA (q). É claro que não observamos os valores de et, então não é realmente regressão no sentido usual. Observe que cada valor de yt pode ser considerado como uma média móvel ponderada dos últimos erros de previsão. No entanto, os modelos de média móvel não devem ser confundidos com o alisamento médio móvel discutido no Capítulo 6. Um modelo de média móvel é usado para prever valores futuros, enquanto o alisamento médio móvel é usado para estimar o ciclo tendencial de valores passados. Figura 8.6: Dois exemplos de dados de modelos de média móvel com diferentes parâmetros. Esquerda: MA (1) com y t 20e t 0,8e t-1. Direita: MA (2) com y t e t - e t-1 0,8e t-2. Em ambos os casos, e t é normalmente distribuído ruído branco com média zero e variância um. A Figura 8.6 mostra alguns dados de um modelo MA (1) e um modelo MA (2). Alterando os parâmetros theta1, dots, thetaq resulta em diferentes padrões de séries temporais. Tal como acontece com modelos autorregressivos, a variância do termo de erro e só mudará a escala da série, não os padrões. É possível escrever qualquer modelo AR (p) estacionário como um modelo MA (infty). Por exemplo, usando a substituição repetida, podemos demonstrar isso para um modelo AR (1): begin yt amp phi1y et amp phi1 (phi1y e) amp phi12y phi1 e amp phi13y phi12e phi1 e amptext final Fornecido -1 lt phi1 lt 1, o valor de phi1k será menor à medida que k for maior. Assim, eventualmente, obtemos yt et phi1 e phi12 e phi13 e cdots, um processo MA (infty). O resultado inverso é válido se impomos algumas restrições nos parâmetros MA. Em seguida, o modelo MA é chamado invertible. Ou seja, que podemos escrever qualquer processo de MA (q) invertível como um processo AR (infty). Modelos Invertiveis não são simplesmente para nos permitir converter de modelos MA para modelos AR. Eles também têm algumas propriedades matemáticas que torná-los mais fáceis de usar na prática. As restrições de invertibilidade são semelhantes às restrições de estacionaridade. Para um modelo MA (1): -1lttheta1lt1. Para um modelo MA (2): -1lttheta2lt1, theta2theta1 gt-1, theta1-theta2 lt 1. Condições mais complicadas mantêm-se para qge3. Novamente, R irá cuidar dessas restrições ao estimar os modelos.

No comments:

Post a Comment